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Diffusion coefficient and shear viscosity are calculated for fluids containing
molecules modelled as chains of tangent hard spheres. A formula for the Stokes–
Einstein relation is proposed for hard chain fluids to calculate the shear viscosity
from the diffusion coefficient. The numerical results show a good agreement
between theoretical values and molecular dynamics results
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1. Introduction

The study of transport coefficients is very important in the development of our

standing of molecular motions and interactions in the dense fluids [1]. For monoatomic

fluids the Enskog kinetic theory of a hard sphere fluid has been used with reasonable

success [2]. In this theory, the transport properties are calculated through the use of

simple equations relating the particle mass, temperature, density, particle size and

radial distribution function at contact diameter. Several empirical methods [3–5] have

been developed to calculate diffusion coefficients for normal real fluids based on

smooth and rough–hard sphere systems. For chain molecules, Yu and Gao [6]

developed equation to estimate self–diffusion coefficients of Lennard-Jones chain (LJC

model). Smith et al. [7]. have presented the molecular dynamics study of transport

coefficients for chains of tangent hard spheres. Most of the work is limited to diffusion

coefficients and no theoretical study has been done to study the viscosity coefficient of

chain molecules. In this article, we propose a modified Stokes–Einstein relation for

hard chain molecules. Thus, the present work describes the results for self diffusion

coefficients and shear viscosity of hard chain fluid with chain lengths 2, 4, 8 and 16.

2. Theory

The Enskog equation for the hard sphere fluid given by

DE ¼
D0

gð�Þ
¼

3

8��2
kBT

�m

� �1=2
1

gð�Þ
, ð1Þ
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where g(�) is the radial distribution function at contact is [8],

gð�Þ ¼
1� 0:5�

ð1� �Þ3
, ð2Þ

where � is packing fraction, �¼ (�/6) �� [3]¼ (�/6) �*.
A correction factor is proposed by Ruckenstein and Liu [9], employing molecular

dynamics simulation data to describe diffusion coefficient at high densities as,

DHS ¼ DEfð�
�Þ ¼

Dofð�
�Þ

gð�Þ
, ð3Þ

where f(�*)¼ 1þ 0.94605 �*1.5þ 1.4022 �*3� 5.8698�*5þ 2.6626 �*7.
For the chain molecule Do in Equation (1) can be described as

Doc ¼
3

8��02
kBT

�m0

� �1=2

, ð4Þ

where �0 and m0 are expressed as

�03 ¼ N�3;m0 ¼ Nm: ð5Þ

On solving Equation (4) we get

Doc ¼
3�

8��N1=6

kBT

�m

� �1=2

, ð6Þ

where �*¼ �N�3.
Hence, the self–diffusion coefficient of hard-chain fluid can be expressed as

DHSC ¼
DocFðN, ��Þ

gð�Þ
, ð7Þ

where F(N,�*) is correction factor for the hard chain length

FðN, ��Þ ¼ fð��Þ exp �0:06356ðN� 1Þ � 0:05212
N� 1

N

� �
�� � 1:9709

N� 1

N

� �2
��

( )
, ð8Þ

where N represents chain length.
The reduced diffusion coefficient can be defined as

D�HSC ¼
DHSC

ðkBT=m�2Þ
1=2�2

¼
3FðN, ��Þ

8
p
�N1=6��gð�Þ

: ð9Þ

To determine the shear viscosity, we propose a Stokes–Einstein relation for chain

molecules as

2��0N1=3�shearD

kBT
¼ 1, ð10Þ
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where �0 is assumed as single hard-sphere diameter for chain molecules [6]. Thus we get
shear viscosity as

�shear ¼
4ðkBTmÞ

1=2��gð�Þ

3
p
��2N1=2FðN, ��Þ

, ð11Þ

and reduced shear viscosity as

��shear ¼
�shear

ðkBTmÞ
1=2=�2

¼
4��gð�Þ

3
p
�N1=2FðN, ��Þ

: ð12Þ

3. Results and discussion

In this article, we report the self-diffusion coefficient and shear viscosity of hard-chain
fluids with lengths 2, 4, 8 and 16 at different volume fractions. The general trend is that the
self-diffusion coefficient decreases with increasing volume fraction and also with increasing
chain length, while the shear viscosity increases with increasing volume fraction and also
with increasing chain length. Self-diffusion coefficient decreases with chain length is due
to stronger connectivity constraints that impede motion. Our proposed formula of
Stokes–Einstein relation predicts good agreement between theoretical and molecular
dynamics results of shear viscosity. However, the deviation increases with increasing chain
length at high densities. The results are shown in Table 1. The most notable feature of the

Table 1. Comparison of present results for reduced transport coefficients of hard chain fluids with
simulation results.

�
D*HSC

Equation (9)
D*HSC

MD [7]
�*shear

Equation (12)
�shear
MD [7]

N¼ 2
0.1 0.699 0.680 0.143 0.152
0.2 0.271 0.266 0.368 0.313
0.3 0.127 0.121 0.786 0.733
0.4 0.049 0.047 2.018 2.208
0.5 0.009 0.009 10.37 10.68

N¼ 4
0.1 0.486 0.479 0.129 0.125
0.2 0.167 0.175 0.376 0.330
0.3 0.069 0.070 0.905 0.896
0.4 0.024 0.025 2.621 3.24
0.5 0.004 0.004

N¼ 8
0.1 0.311 0.307 0.127 0.114
0.2 0.099 0.101 0.400 0.411
0.3 0.038 0.036 1.040 1.399
0.4 0.012 0.012 3.26 4.66
0.5 0.001 0.001

N¼ 16
0.1 0.159 0.175 0.156 0.150
0.2 0.048 0.050 0.574 0.663
0.3 0.017 0.016 1.396 2.200
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results is the non-monotonous behaviour of the friction coefficient of the chain molecules,
i.e. F(N, �*). This is observed with increasing density for a particular chain length as well
as with increasing chain length at a particular value of density. The non-linearity is found
to be maximum with increasing chain length at high density �*¼ 0.8. Thus, the friction
coefficient plays an important role in describing the transport coefficients. The results are
shown in Figures 1 and 2.
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Figure 2. Friction coefficient versus densities at various chain length.
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Figure 1. Friction coefficient versus chain length at various densities.
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